
Journal of Systems Integration, 5, 253-274 (1995)
�9 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

An Interface between Object-Oriented Databases
and Relational Databases

CHIN-WAN CHUNG
Department of Information and Communication Engineering, Korea Advanced Institute of Science and
Technology, Seoul 130~50, Korea

Abstract. Currently relational databases are widely used, while object-oriented databases are emerging as a new
generation of database technology. This paper presents a methodology to provide effective sharing of information
in object-oriented databases and relational databases. The object-oriented data model is selected as a common data
model to build an integrated view of the diverse databases. An object-oriented query language is used as a standard
query language. A method is developed to transform a relational data definition to an equivalent object-oriented
data definition and to integrate local data definitions. Two distributed query processing methods are derived. One
is for general queries and the other for a special class of restricted queries. Using the methods developed, it is
possible to access distributed object-oriented databases and relational databases such that the locations and the
structural differences of the databases are transparent to users.

Keywords: database, interface, distributed systems, translation, integration

1. I n t r o d u c t i o n

Accessibility to heterogeneous distributed databases enables the sharing of an organiza-
tion's data. An integrated view of the heterogeneous databases is required to provide the
transparency of the locations and the structure of the databases to users and application.

There has been a number of systems [7, 8, 15, 16, 19, 22, 23] which aimed at achieving
an interoperability of traditional database systems including hierarchical, network, and
relational database systems and file systems. Many of the above heterogeneous distributed
DBMS's (HDDBMS's) used the relational data model as a common data model to provide
the integrated view because data definition in hierarchical or network data model can be

translated to equivalent relational data definitions. Based on the relational data model, an
HDDBMS called DATAPLEX [8] had been developed, which interfaced relational databases
and hierarchical databases. While the Multibase [16] used a functional data model which
is non-relational, its purpose was to integrate traditional database systems.

Recently, the object-oriented (OO) database [2, 3, 4, 11, 13, 14,17] has emerged and
it is becoming important. The advantages of the OO database include the adequacy for
non-traditional application areas such as CAD, CAM, CIM and office automation as well
as rapid application development using shared code stored in the database. It is expected
that the amount of OO database usage will increase in the near future. On the other hand,
the relational database is currently popular and many relational database systems are being

developed.
It is necessary to interface OO databases and relational databases for the sharing of

diverse databases in an organization. In other words, an HDDBMS needs to provide

254 CHIN-WAN CHUNG

access to OO databases in addition to traditional databases. Since the interface among the
traditional databases has been developed, we investigate how to interface an OO database
with a relational database. Then, one way to interface an OO database with a network or
hierarchical database is a transitive interface through a relational database.

The information captured by the relational data model can be represented using the OO
data model, while some features in the OO database cannot be modeled using the relational
framework. These features include multimedia data types and the encapsulation of the
behavior of objects. In an OO database environment, designers of parts, for example,
can store and execute engineering analysis programs and manufacturing constraint tests
as methods, as well as store and view pictures of parts using the image data type. The
relational database management system does not directly support such features. Although
the relational data model can be extended, currently the OO data model is more natural and
established to represent the features and structures of diverse databases. In addition to a
powerful modeling capability, the OO paradigm provides features to tailor the operations
of objects to perform specific functions. For instance, an object may trigger an execution
of an existing application program in a remote database system or an object may further
manipulate raw data retrieved from another location.

Therefore, we select the OO data model as a common data model to build an integrated
view of distributed OO databases and relational databases. Through an integrated view
in the common OO data model, the users can access data in both OO databases and re-
lational databases. Additionally, all the features of local OO databases can also be used
through the integrated view because the integrated view is in the OO data model. There
were other systems [1, 5] which took object-oriented approaches to access heterogeneous
databases. These systems used a multidatabase approach which is to provide multidatabase
applications with interfaces to access multiple data sources without having an integrated
schema. Our approach is a federated approach which is to build an integrated view through
schema translations to support the transparency of the locations and the structures of diverse
databases.

The effects of the above two approaches to the performance are considered to be similar
in the sense that the effects are relatively small compared with the overall processing
time of queries. In a federated approach, it is the creation of an integrated view that is a
time consuming process due to syntactic and semantic heterogenities of local databases.
However, once an integrated view is derived, the use of the view is fairly simple. The view
is used to find locations of the data objects referenced in a query and the local names of the
data objects, and optionally to enforce an access control. Since the size of an integrated
view is small enough, these operations can be efficiently performed as cached local table
lookups.

In a multidatabase approach, an integrated view is not built. Instead, each user has to
know the details of local databases that the user wants to access. In addition, in order to
access multiple databases, a multidatabase language has to be developed to formulate a
users request that cannot be expressed in a local database language. A query formulated
in a multidatabase language may contain entries that require table lookups. For example,
a directory must be searched to find the location of a local database X that includes a data
object Y when X.Y appears in a query [18]. Therefore, a multidatabase approach involves

AN INTERFACE BETWEEN OBJECT-ORIENTED DATABASES AND RELATIONAL DATABASES 255

steps similar to those in using an integrated view in a federated approach when processing
a query.

From the performance test [8, 9] of DATAPLEX, the effect of a federated approach to
the performance can be analyzed. The test environment involved a computer network in
a building and two different types of local database systems connected by the computer
network. The query response time consists of (1) the processing time at the query origin,
(2) the query and data transfer time through the network, and (3) the processing time at the
target database locations. The time for using an integrated view is a small fraction of (1)
which also includes the time for query parsing and decomposition as well as the time for the
presentation of the query result. For a small test database, the combination of (1) and (2)
were 20-30% of the query response time on the average. For a large production database,
the sum of (1) and (2) were about 4% of the query response time, which implies that the
time for using an integrated view is less than 1% of the query response time. From the above
discussions, it is expected that the effect of a multidatabase approach to the performance is
also very small but nonzero. Consequently, the effect of a federated approach and that of a
multidatabase approach to the performance is similar.

While the basic construct of the OO data model has been established, the standardization
of the model is not complete. As we discuss our approach, we will introduce OO data
model features which are useful for interfacing OO databases with relational databases, but
which have not been commonly used. They include representations of different types of
relationships among objects, and some aspects of the query lbrmulation for a navigation in
the objects structure. On the other hand, although there are many OO database features, we
will deal with only the features which are directly related to the issues addressed in this paper.

We develop a method to translate a relational data definition to an equivalent OO data
definition and to integrate local OO data delinitions. A major portion of the method is the
modeling of the access path among classes and relations. In addition, a method is derived
to process an OO query lbrmulated based on the integrated view. Two distributed OO query
decomposition algorithms are developed.

Section 2 presents the schema translation and the schema integration for building an
integrated view using the OO data model. The processing of a distributed query is described
in Section 3. An OO query syntax is defined. The processing of general queries and the
processing of a special class of restricted queries are explained.

2. Schema Translation and Intergration

In this section, we present a method to synthesize an integrated view from local schemas.
Since the scope of access may be different for different groups of users, there can be many
integrated views. The core of the schema translation and integration is the representation
of access paths among entities.

An access from instances of an entity to instances of another entity can be made when
there is a relationship between instances of the two entities. Different data models represent
the relationship among entities in different ways.

In the OO data model, there are basically two features to represent relationships among the
classes: the class hierarchy (or is-a hierarchy) [20, 21] and the class composition hierarchy
(or part-of hierarchy) [3,6]. The class hierarchy represents the relationship between the

256 CHIN-WAN CHUNG

superclass and the subclass. The set of instances of a class is a subset of the set of instances
of its superclass. However, the class hierarchy does not specify the relationship among
instances of the two classes.

When the domain of an attribute in a class is a user-defined class, the class composition
hierarchy (CCH) is made between the two classes. Such attribute is called a composite
attribute. The value of a composite attribute of an object can be an identifier of an object
or a set of identifiers of objects of the class which is the domain of the composite attribute.
Therefore, the CCH represents the relationship between the instances (i.e., objects) of two
classes. Depending on the numbers of objects of one class related to objects of the other
class, the relationship between the classes may be one-to-one, one-to-many, or many-to-
many. We use the CCH to model the access path.

The CCH is a well-established concept of the OO data model, however different types
of the CCH are not yet completely standardized. Two types of the CCH are defined in the
context of building an integrated view. Further, a method is developed to identify the types
in the process of translating a relational data definition to an OO data definition. One type
is the independent CCH and the other the dependent CCH. The independent CCH models
the part-of relationship between the objects of two classes. The existence of the objects of
two classes related by the independent CCH is autonomous. For example, even if the data
of an assembly is no longer needed, the data of the component parts of the assembly often
need to be kept.

In case of the dependent CCH, the dependent object does not have any meaning without
the owner object. The dependent CCH is similar to the parent-child relationship of the
hierarchical or network data model. The characteristics of the dependent CCH to model
the access paths are as follows:

CI: An owner object must exist to create a dependent object.

C2: If an owner object is deleted, its dependent objects must be deleted.

It is clear from the above that, if a class has many owner classes,(a) all owner objects
must exist to create a dependent object, and (b) if any of the owner objects is deleted, the
dependent objects must be deleted.

In the relational data model, the relationship between two relations is represented by the
joining attributes which are the common attributes of the two relations. The access paths
among the relations can be found by identifying joining attributes.

In order to provide an integrated view of heterogeneous databases in terms of the OO data
model, the relational data definition must be translated to an equivalent OO data definition.
Besides, the definitions of the OO databases which have relationships to relational databases
need to be modified to include access paths to there lational databases.

A relation R(al , a2 am) will be translated to a class C(al, a2 am) where ai is
the ith attribute. This notation is to show the correspondence between the source and the
target of a translation. The name of a relation and attributes may be changed in a translation.
Since R is a relation in at least first normal form, C does not contain any composite attribute.
Obviously, C does not include any method either. A class translated from a relation is not
in a class hierarchy with any user-defined class in an OO database or classes translated from

AN INTERFACE BETWEEN OBJECT-ORIENTED DATABASES AND RELATIONAL DATABASES 257

other relations. Initially, the translated class becomes a subclass of the system-defined root
class (or any class which has the characteristics of the root class).

The sets of classes in local OO databases are linked by class hierarchies and CCH's.
These class structures become a part of the integrated view. At this point, the integrated
view consists of class structures from local OO databases and standalone classes from local
relational databases. The integrated view is completed by adding CCH's to represent access
paths.

Let C (R i) and C(Rj) be the classes translated from relations R i and Rj, respectively, and
C(Ci) and C(Cj) the classes translated from classes Ci and Cj, respectively, in a local OO
database. The possible access paths are between C(Ri) and C(Rj), between C (R i) and
C(Cj), and between C(Ci) and C(Cj).

Consider the access path between C(Ri) and C(Rj). The acce path in the relational
database is via joining attributes. Suppose Ri (oe, all , ai2 ain) and Rj (or, aj l, a j2 ajm)
are two relations with the joining attribute et (it is trivial to generalize this to a set of joining
attributes) and attributes aix, for 1 < x < n, and ajy, for 1 < y < m. In creating a CCH
between C (R i) and C (R j), we have to decide the direction and the type of the CCH. If the
database is used by a single user or a small group of users, the users can specify the direction
such that the starting class of the CCH is the class which is more frequently accessed and
more often becomes the origin of the search path. However, in an environment with many
users, which would be more common, rules to determine the direction have to be derived.

We use the semantics represented by the joining attribute a in relations R i and Rj. Consider
a situation where R i.Ot is a primary key and Rj.oe is a foreign key. In many occasions, Rj.oe
is a non-key, and Rj is a relation describing a relationship between an entity corresponding
to R i and another entity. In this case, since R i is more frequently accessed than Rj, the
direction of the CCH becomes from C(Ri) to C(Rj).

Although there are exceptions to the above strategy, it covers the majority of occasions.
Therefore, if R i .or is a key and Rj.ce is a non-key, we make the direction of the CCH from
C(Ri) to C(Rj). In case, both Ri.ce and Rj.ce are keys or both arc non-keys, the direction
of the CCH is arbitrary.

Suppose the direction of the CCH becomes from C(R,) to C(R)). This is accomplished
by adding a composite attribute fl to C(Ri). The domain of fi depends on the cardinality
relationship between R i and Rj. When Ri.oe is a key (a primary key or an alternate key),
it is easy to show that if Rj.o~ is a key, then the relationship between R - i and Rj is
one-to-one, otherwise the relationship is one-to-many. If both Ri .or and Rj.ce are non-keys,
the relationship is many-to-many.

When the direction of CCH is C(Ri) to C (R j) (including the cases where this direction
is taken arbitrarily), the cardinality relationship between Ri and Rj are as follows:

(a) If Ri .or is a key and Rj.oe is a non-key, the relationship is one-to-many.

(b) If both R i.ot and Rj.ee are keys, the relationship is one-to-one.

(c) If both Ri.ot and Rj.ee are non-keys, the relationship is many-to-many.

If the relationship is one-to-many or many-to-many, the domain of the composite at-
tribute fl in C(Ri) is the set of C(Rj). Consequently, the translation of R i and Rj

258 CHIN-WAN CHUNG

results in two classes c (g i) (o t , a i l , ai2 ain, /3 (DOMAIN_IS SET_OF C(Rj)) and
C(Rj)(ot, ajl, aj2 aim), where the domains of attributes other than the composite at-
tribute 13 are not specified for simplicity. If the relationship between Ri and Rj is one-to-one,
the domain of/3 is C(Rj). In this case, two translated classes are C(Ri) (o t , a i l , ai2 ain,

/3 (DOMAIN_IS C(Rj)) and C(Rj)(ot, ajl, aj2 aim).
The type of a CCH between two classes in a local OO database can be specified during

the database design to capture the semantic relationship of the two classes. However, the
semantic relationship among relations in the relational database is represented in terms of
attributes. Therefore, we have to use the semantics captured in attributes to decide the type
of a CCH created in the process of schema translation and integration.

The type of the CCH between C (R i) and C (Rj) is determined by two integrity constraints
[12] of the relational database. The entity integrity is that no component of a primary key
value may be null, whereas the referential integrity is that the value of a foreign key must
be either null or equal to a value of the primary key. The following theorem provides the
conditions to determine the type of a CCH using the two integrity constraints.

THEOREM 1 The relationship between C (Ri) and C (R j) is dependent iff Ri .or is the primary
key and Rj.ot is a component of the primary key of Rj.

Proof: (+--) Since Ri.ot is the primary key, Rj.ot is a foreign key. By the referential
integrity, the value of Rj.ot is either null or the same as a value of R i .or. Since Rj.ot is a
component of the primary key of Rj, from the entity integrity, the value of Rj.ot is equal
to a value of R i .or. Therefore, the characteristics of the dependent CCH, C1 and C2 are
satisfied.

(----~) Suppose ei .or is not the primary key or Rj.ot is not a component of the primary
key of Rj. (i) If Ri .or is not the primary key, Rj.ot may or may not be a foreign key. If
Rj .or is a foreign key, its corresponding primary key is Rk.ot for k r i. (ii) If Rj .or is not a
component of the primary key of Rj, the value of Rj.ot may be null. For both (i) and (ii),
there can be the value of Rj.ot which is not in the set of values of R i .or. This implies that
the characteristics C1 and C2 are not satisfied.

In summary, there are six different cases excluding the symmetric cases, and the creation
of a CCH for each case is shown in Table 1. �9

When a global query references both a relational database and an OOdatabase, a translator
must generate a relational query to access the relational database. The relational query
retrieves the values of attributes from the relational database. Therefore, the access path
between c (g i) and C(Cj) exists only if there is a common attribute in g i and Cj. Thus,
the access path between C (R i) and C(Cj) can be handled in the same way as the modeling
of the access path between c (g i) and C(Rj).

Consider an access path between C(Ci) and C(Cj), where Ci and Cj are classes in
different local OO databases. A composite attribute will be added to C(Ci) or C(Cj) to
create a CCH. This type of access path is similar to the access path in a local OO database.
However, there is one important difference in terms of actual data storage. The local OO
database is populated according to the local OO data definition. The values of composite

AN INTERFACE BETWEEN OBJECT-ORIENTED DATABASES AND RELATIONAL DATABASES 259

Table 1. The Creation of CCH's for Six Different Cases

Case Ri .ct Rj .or CCH Direction CCH Type Domain of fl

1 Primary key Alternate key Arbitrary Independent C(Rj)
2 Primary key Non-key & part C(RI) to C(Rj) Dependent SET_OF C(Rj)

of primary key
3 Primary key Non-key & C(Ri) to C(Rj) Independent SET_OF C(Rj)

not part of
primary key

4 Alternate Alternate Arbitrary Independent C(Ri) or

key key C (R))
5 Alternate N o n - k e y C(Ri)toC(Rj) Independent SET_OF C(Rj)

key
6 N o n - k e y Non-key Arbitrary Independent SET_OF C (R i)

or SET_OF
C(Rj)

attributes in a local OO data definition are stored in the local OO database. On the other
hand, the composite attributes added in the global view merely specify the access paths.

It is not desirable to identify, store and maintain the values of the added composite
attribute. In particular, these values must be stored separately from the local OO database
so that the values are invisible to users of the local database. Suppose there is a common
attribute between the two classes. An effective way to handle the values of an added
composite attribute is to compute the values when it is needed using the values of the
common attribute. For this reason, we only consider the access path between C(Ci) and
C(Cj) when there is a common attribute in Ci and Cj.

Therefore, the six cases for creating CCH can be applied to model all possible types of
access paths: between relations, between a relation and a class, and between classes. The
following example shows the translation of local data definitions incorporating the creation
of access paths. The result is an integrated view.

Example 1. There is a relational database at Location 1 consisting of three relations given
below.

PART (P#, P_NAME, MATERIAL, PRICE, DS#)
CUSTOMER (C#, C_NAME, LOCATION, GRADE, BUSINESS_TYPE)
SUPPLY (P#, C#, QUANTITY)

An OO database is at Location 2 with three classes and two CCH's.

DESIGN (DS#, DESIGNER, DS_DATE, MANUFAC_COST, D R G (D O M A I N J S
SET_OF DRAWING))

DRAWING (DR#, PICTURE (DOMAIN_IS IMAGE))
IMAGE 0

We assume that a design consists of a set of unique drawings, and therefore the two
CCH's are dependent. The methods that may be in classes are irrelevant. Figure 1 shows

260 CHIN-WAN CHUNG

Relational Database Object-Oriented Database

CUSTOMER PART DESIGN

SUPPLY

1 ,ocation 1

Figure 1. Two local database schemas.

DRAWING

IMAGE

Location 2

the two local databases. A single-arrow on a CCH indicates the direction of one-to-one
relationship, whereas a double-arrow one-to-many relationship.

PART.P# is the primary key of PART, and SUPPLY.P# is a non-key and a compo-
nent of the primary key SUPPLY.P#, SUPPLY.C#. Therefore, the relationship between
PART and SUPPLY is one-to-many and a dependent CCH is created from C(PART) to
C(SUPPLY). Similarly, a dependent CCH representing one-to-many relationship is created
from C(CUSTOMER) to C(SUPPLY).

There is a common attribute DS# between the class DESIGN and the relation PART. We
assume that there is one design per part. In the class DESIGN, the values of DS# in different
design objects are distinct. Although the object identifier of the OO database takes the role of
the primary key of the relational database, we will informally call DESIGN.DS# the primary
key in the sense that the value of DS# of a design object is unique. Since DESIGN.DS# is
the primary key and PART.DS# is an alternate key, there is an independent CCH between
C(DESIGN) and C(PART) with an arbitrary direction and the relationship between DESIGN
and PART is one-to-one. We select the direction to be from C(DESIGN) to C(PART).
The independent CCH implies that even when the design information is deleted, the part
information should be kept. The six translated classes with added composite attributes are
listed below.

C(DESIGN) (DS#, DESIGNER, DS_DATE, MANUFAC_COST, DRG
(DOMAIN_IS SET_OF C(DRAWING)), PA(DOMAIN_IS
C(PART)))

C(DRAWlNG)(DR#, PICTURE (DOMAIN_IS C(IMAGE)))
C(IMAGE) 0
C(PART) (P#, P_NAME, MATERIAL, PRICE, DS#, SY (DOMAIN_IS

SET_OF C(SUPPLY)))
C(CUSTOMER) (C#, C_NAME, LOCATION, GRADE, BUSINESS_TYPE,

SY (DOMAIN_IS SET_OF C(SUPPLY)))
C(SUPPLY) (P#, C#, QUANTITY)

AN INTERFACE BETWEEN OBJECT-ORIENTED DATABASES AND RELATIONAL DATABASES 261

C(CUSTOMER) C(PART)

C(SUPPLY)

C(DESIGN)
---,4.-

C(DRAWING)

C(IMAGE)

Location 1 Location 2

Figure 2. An integrated view in object-oriented data definition.

The integrated view in the OO data definition is depicted in Figure 2. The solid line
specifies the dependent CCH and the dotted line the independent CCH.

3. Distributed Query Processing

Our objective is to provide an OO data model as a common data model and an OO query
language as a standard query language. In this environment, a global query in an OO query
language is formulated based on the integrated view discussed in Section 2. The global
query must be decomposed into local queries by locations of referenced data. Then a local
OO query is translated to an equivalent relational query when the referenced local database
is a relational database. Finally, the local results are merged to form a single response to
the original query.

3.1. Query Syntax

A major issue is that currently the OO query language is far from being standardized.
There are many different types of OO query languages. Some of them are experimental and
others used by commercial OODBMS's. These languages differ very much in functions
and syntax. Therefore, rather than using a particular OO query language, we consider
certain basic functions of the OO query language and concentrate on unique problems in
processing those functions in a heterogeneous database environment.

The features of a relational query language are supported by basic operations selection,
projection, equijoin and various aggregations. Especially the equijoin is used to access from
one relation to another. Among the operations, the aggregations (e.g., sorting, averaging)
are performed on raw data after they are retrieved by other operations. The OO query
language should contain the features corresponding to the relational selection, projection,
equijoin and aggregations. Since the aggregations in a distributed OO query should also be
performed at the query origin after local results are retrieved, the part of the query containing

262 CHIN-WANCHUNG

the aggregations should be separated out and processed at one location. Therefore, we do
not have to consider aggregations in distributed query processing.

The processing of selection and projection is similar in an OO database and a relational
database. That is, there is one-to-one correspondence in translating an OO query to a
relational query with respect to these operations. A major difference between the OO
database and the relational database is that the operation corresponding to the relational
equijoin is processed quite differently in the OO database. As discussed in Section 2, the
relationship between the entities is modeled by the CCH in the OO database. Therefore,
the OO query language feature corresponding to the relational equijoin is the navigation
through the CCH. Since the inequality join is very seldom used, a join implies an equijoin
for the rest of this paper.

The relational join is performed by comparing the values of joining attributes, whereas
the navigation through the CCH is by using the object identifiers (OID's) stored under
a composite attribute. To be as general as the relational query language, the OO query
language should be able to represent the access path between two classes regardless of the
direction of a CCH.

The navigation can be expressed using the composite attribute. The navigation through a
CCH following the direction of the CCH is called a forward navigation. Given the starting
class of a navigation, the forward navigation only requires a composite attribute of the class
because the composite attribute uniquely determines its domain class. The domain class
becomes the ending class of the navigation. However, the name of a composite attribute is
not unique. Therefore, the backward navigation requires the ending class name in addition
to its composite attribute whose domain is the starting class. This is illustrated in the coming
example.

From the above discussions, the SQL-like syntax of the OO query containing basic features
is as follows:

SELECT target attributes
FROM classes containing target attributes
WHERE qualification

The qualification contains selection terms, composite attributes, parentheses and Boolean
operators AND, OR, NOT. This syntax is by no means intended to suggest an operational
query language, but to show a method for processing queries involving basic operations.

For example, in the integrated schema in Figure 2, consider a request"Find the location of
the grade A customer who receives more than 500 plastic parts?' The corresponding query
is as follows:

SELECT LOCATION
FROM C(CUSTOMER)
WHERE GRADE = 'A'

AND (SY
QUANTITY > 500

AND (C(PART).SY
MATERIAL = 'plastic'))

AN INTERFACE BETWEEN OBJECT-ORIENTED DATABASES AND RELATIONAL DATABASES 263

{LOCATION}

GRADE = 'A' MATERIAL = 'Plastic'

\ /
SUPPLY)

QUANTITY > 500

Figure 3. The query graph of an example query.

SY is the composite attribute in C(CUSTOMER) representing the forward navigation
through the CCH from C(CUSTOMER) to C(SUPPLY). C(PART).SY represents the back-
ward navigation through the CCH from C(PART) to C(SUPPLY).

This query can be transformed to the query graph shown in Figure 3 with classes as nodes
and qualification terms as edges. The list of target attributes from a class is specified in
braces. It is observed from the query graph that there can be many different orders in which
the operations of the query are processed. An efficient ordering of operations is generated
based on the data distribution and the availability of backward pointers for CCH's and it is
the role of the query optimization.

The target attribute and the selection term in the OO query syntax correspond to those in
SQL, respectively. The composite attribute in the OO query syntax corresponds to the join
term in SQL. Therefore, the translation of an OO query to an SQL query is straightforward.
We will focus on the distributed query decomposition.

3.2. General Queries

An OO query can be decomposed into a set of conjunctive queries by eliminating NOT's
and OR's in the qualification. NOT's are eliminated by using DeMorgan's law and negating
relational operators in selection terms. OR's are eliminated by transforming the qualification
into a disjunctive normal form. Each conjunctive term becomes a subquery and the result
of the original query is the union of the results of the conjunctive subqueries. For example,

264 CHIN-WANCHUNG

consider the following query for the schema in Figure 2:

SELECT DESIGNER
FROM C(DESIGN)
WHERE DS_DATE > 901231

AND (PA
MATERIAL = 'aluminum'

OR (SY
QUANTITY > 1000

AND QUANTITY < 2000))

Since the domain of C(DESIGN).PA is C(PART) and the domain of C(PART).SY is
C(SUPPLY), the qualification is equivalent to

DS_DATE > 901231 AND
(C(PART).MATERIAL = 'aluminum' OR
(C(SUPPLY).QUANTITY > 1000 AND C(SUPPLY).QUANTITY < 2000))

Let W = DS_DATE > 901231,

X = C(PART).MATERIAL = 'aluminum',
Y = C(SUPPLY).QUANTITY > 1000, and
Z = C(SUPPLY).QUANTITY < 2000.

Then the qualification is

W AND (X OR (Y AND Z)) = (W AND X) OR (W AND Y AND Z)

The two conjunctive subqueries are:

SELECT DESIGNER
FROM C(DESIGN)
WHERE DS_DATE > 901231

AND (PA
MATERIAL = 'aluminum')

SELECT DESIGNER
FROM C(DESIGN)
WHERE DS_DATE > 901231

AND (PA
(SY

QUANTITY > 1000
AND QUANTITY < 2000))

For a distributed conjunctive query, we present two query decomposition algorithms,
ALGORITHM_D1 and ALGORITHM_D2. ALGORITHM_D1 is for general queries and
ALGORITHM_D2 is for a restricted class of queries.

Suppose Ei and Ej are two entities at different locations. E i (or Ej) may be a relation or a
class. From the discussion in Section 2, the CCH between C(Ei) and C(Ej) in the integrated

AN INTERFACE BETWEEN OBJECT-ORIENTED DATABASES AND RELATIONAL DATABASES 265

schema implies that there is a joining attribute a between C(Ei) and C(Ej). Therefore, the
navigation between C(Ei) and C(Ej) is equivalent to the join C(Ei).ot = C(Ej).c~.

ALGORITHM_D1 requires a final merging of results of local queries using relational
joins. The relational join can be processed by (a) using a relational DBMS in a distributed
database system, (b) using an OODBMS in which a join operation has been implemented,
or (c) implementing a join operation in a distributed query manager.

ALGORITHM_D1 is as follows:

ALGORITHM_D 1.

1. Transform a query to a query graph Q with classes as nodes and qualification terms and
composite attributes as edges. Specify the set of target attributes T/for each location i.

2. Convert composite attributes between two nodes at different locations to join terms.

.

4.

Delete edges connecting nodes at different locations and save the set E of labels on
deleted edges. Let Qi denote the subgraph of Q corresponding to the location i.
Suppose the label of a deleted edge is Cj.ot = Ck.ot, Cj c Q j, and Ck 6 Qk- Update
the set of target attributes Tj and Tk such that Tj +- Tj tJ {or} and Tt +-- Tk U {oe}.

Transform each subgraph Qi back to a local query and assign the result of the query to
a temporary result TEMPi.

5. Formulate the final merging query such that

(a) the target list of the merging query is the same as that of the original query,

(b) FROM list is the list of TEMPi's, and

(c) the qualification is the conjunction of edge labels saved in E with a class name
from the location i replaced by TEMPi.

Example 2.
follows:

Location 1:

Location 2:

Location 3:

We give an example to show the steps of ALGORITHM_D1 below.

The schema in Figure 2 is used with the locations of classes changed as

C(CUSTOMER)

C(SUPPLY), C(PART)

C(DESIGN), C(DRAWING), C(IMAGE)

Consider a user request: For designs of ceramic parl~ designed after 1985 such that the
parts were supplied less than 500 units to customers in California, find the manufacturing
costs of the designs and the types of business of the customers.

266 CHIN-WANCHUNG

Let C be the class C(CUSTOMER), S be C(SUPPLY), P be C(PART), and D be
C(DESIGN). The OO query formulation of the request is as follows:

SELECT MANUFAC_COST, BUSINESS_TYPE
FROM D,C
WHERE DS_DATE > 851231

AND (PA
MATERIAL = 'ceramic'

AND (SY
QUANTITY < 500
AND (C.SY

LOCATION = 'California')))

The steps of query decomposition is as follows:

1. The query graph Q is shown in Figure 4. ~b denotes an empty set.

. The joining attribute between C and S is C#. Since C is at Location 1 and S is at
Location 2, C.SY is converted to the join term C.C# = S.C#. Similarly, D . P A is
converted to P . D S # = D.DS#.

. The query graph Q is decomposed into subgraphs Q1, Q2 and Q3 as depicted in Figure 5.

E = {C.C# = S.C#, P . D S # = D.DS#}

T1 +-- T1 U {C#} = { B U S I N E S S _ T Y P E , C#}

T2 +-- T2 U {C#} U {DS#} = {C#, DS#}

T3 +-- T3 U {DS#} = {DS#, M A N U F A C _ C O S T }

4. Subgraphs are transformed to local queries.

TEMP1 = SELECT BUSINESS_TYPE, C#
FROM C
WHERE LOCATION = 'California'

TEMP2 = SELECT C#, DS#
FROM P,S
WHERE MATERIAL = 'ceramic'

AND (SY
QUANTITY < 500)

TEMP3 = SELECT DS#, MANUFAC_COST
FROM D
WHERE DS_DATE > 851231

5. For edge labels in E, C is replaced by T E M P i , S and P by T E M P 2 , and D by

AN INTERFACE BETWEEN OBJECT-ORIENTED DATABASES AND RELATIONAL DATABASES

T 1 = {BUSINESS_TYPE} T 2 = r T 3 = {MANUFAC COST}

267

LOCATION = 'California' MATERIAL = 'Ceramic'

C ~ D.PA

Q

QUANTITY < 500

Figure 4. The query graph Q of a distributed query.

TEMP3. The merging query is as below.

SELECT MANUFAC_COST.BUSINESS_TYPE
FROM T E M P I , TEMP2, T E M ~
WHERE TEMP1.C# = TEMP2.C#

AND TEMP2.DS# = TEMP3.DS#

DS_DATE > 851231

3.3. Restricted Queries

ALGORITHM_D2 is for a query the target attributes of which are from one class and the
query graph of which is acyclic. An important subset of such queries is the set of queries
which retrieve identifiers of selected objects from a class so that messages can be sent to
the objects. Since some OO query languages support only this type of queries, we present
ALGORITHM_D2.

The OlD-based retrieval is a unique characteristics of the OO database. In the relational
database, the query selects data based on values of attributes and returns values. In other
words, the access is always value-based. In the OO database, in addition to the value-based
access, the query can return OID's and an access to a specific object is done by sending a
message to the OlD of the object. Therefore, the access can be value-based or OID-based.
For example, to find the manufacturing cost of a design released on January 15, 1991 by
John, the following query is issued to the OO database shown in Example 1 :

VAR1 = SELECT OID
FROM DESIGN
WHERE DESIGNER = 'John'

AND DS_DATE = 910115

268

T 1 = {BUSINESS_TYPE, C#}

C H I N - W A N C H U N G

T 2 = {C#, DS#} T 3 = {DS#, MANUFAC COST}

LOCATION = 'California' MATERIAL = 'Ceramic'

C P

Q I
P.SY

QUANTIFY < 500

Figure 5. S u b g r a P h s Q I , Q2 and Q3.

DS_DATE > 851231

Q3

The query returns the OID of a desired object in the variable V A R 1. Then, a message can
be sent to the OID in VAR1 as follows:
VAR2 = MANUFAC_COST (VAR1)

It is assumed that there is a method which retrieves the value of an attribute and that its name
is identical to the name of the attribute. Now, the variable VAR2 contains the manufacturing
cost of the design.

The OID-based retrieval is effective for large and complex objects because it is not
practical to return a large number of such objects. In the above query formulation, the OID
is treated as an attribute. If such a query is issued to a class corresponding to a relation, the
primary key value of the relation is retrieved. The message to a relational database using
the primary key value is translated to an SQL query with the message name as a target
attribute and the primary key value in the qualification.

One implementation issue worth considering is an alternative way of handling selected
objects and processing messages to the objects. For efficient message processing, it is
desirable to store selected objects near to a user (or an application) especially if there is an
OODBMS at the user location. This is similar to the storage management of an OODBMS
which stores objects selected by a query in a buffer.

Suppose OODBMS's (or necessary object manipulation functions) are available at most
of the locations to handle OO data manipulations against temporary objects. For a locations
without an OODBMS, an OODBMS at a different location must be assigned. The OODBMS
at the user location or the assigned OODBMS is called the designated OODBMS. Consider
a query accessing a class C(E) to retrieve the OID's of objects of C(E). If (a) E is a class
and the location of E is different from that of the designated OODBMS or (b) E is a relation,
temporary objects corresponding to the selected objects or tuples are created in the private
database by the designated OODBMS. A private database is accessed only by a user and it

AN INTERFACE BETWEEN OBJECT-ORIENTED DATABASES AND RELATIONAL DATABASES 269

can be erased at the end of the user session. The OID's assigned to the temporary objects
are returned and messages can be sent to these objects using the OID's.

ALGORITHM_D2 is based on the fact that the set of queries restricted for ALGO-
RITHM_D2 can be completely processed by semijoins instead of intersite joins. Therefore,
ALGORITHM_D2 does not require the relational join for merging local results. ALGO-
RITHM_D2 is described below.

ALGORITHM_D2.

1. Transform a query to a query graph Q with classes as nodes and qualification terms and
composite attributes as edges. Specify a set of target attributes Ti for each location i.

2. Convert the edges connecting nodes at different locations to dotted edges and convert
composite attributes corresponding to the edges to joining attributes. Let Qi denote the
subgraph at location i.

3. Initialize a counter j = 0. Let Qt denote the subgraph whose target attributes are the
target attributes of the query. Process the following until the query graph becomes null:

(a) Increment j to j + 1. Select the subgraph Qf the farthest, in terms of the number
of dotted edges, from Qt. Break the tie in the distance arbitrarily.

(b) Delete the dotted edge connected to QT. Suppose the label of the deleted edge
between nodes C m and Cn is ~, where Cn c Qf. Update the set of target attributes
Tf such that Tf +-- TT U {oe}. Add an edge to Cm with a label 'oe IN LISTj' , where
IN is an operator testing the membership.

(c) Convert Qf to a local query and assign its result to LISTj. Delete Qf.

4. LISTj is the result of the query.

The following example illustrates ALGORITHM~)2.

Example 3. The schema and the data distribution are the same as those in Example 2. We
use the query in Example 2 except the changed target attribute as follows:

SELECT OID
FROM D
WHERE DS_DATE > 851231

AND (PA
MATERIAL = 'ceramic'

AND (SY
QUANTITY < 500

AND (C.SY
LOCATION = 'California')))

270 CHIN-WANCHUNG

1.

.

.

Each step of ALGORITHM_D2 is described below.

The query graph Q is the same as that shown in Figure 4 except that the sets of target
attributes are: T1 = 0, T2 = 0 and T3 = {OID}, where 0 denotes an empty set.

The edges with labels C.SY and D.PA are converted to dotted edges with joining
attributes. The updated query graph is shown in Figure 6.

Set j = 0. Q3 is the subgraph with T3 = {OLD}.

(a) Set j = 1. Ql is the farthest from Q3.

(b) Delete the dotted edge with the label C#.

T1 +-- T1 UI {C#} = 0 tO {C#} = {C#}.

Add an edge to S with a label 'C# IN LIST_I ' .

(c) Q1 is transformed to a local query at Location 1 as follows:

LISTI = SELECT C#
FROM C
WHERE LOCATION = 'California'

Delete Q1. The updated query graph is shown in Figure 7.

(a) Set j = 2. Q2 is the farthest from Q3.

(b) Delete the dotted edge with the label DS#.

T2 +- T2 U {DS#} = 0 t3 {DS#} = {DS#}.

Add an edge to D with a label 'DS# IN LIST_2'.

(C) Q2 is transformed to a local query at Location 2 as follows:

LISTz = SELECT DS#
FROM P
WHERE MATERIAL = 'ceramic'

AND (SY
QUANTITY < 500

AND C# IN LIST1)

Delete Q2. The updated query graph is shown in Figure 8.

(a) Set j = 3. Q3 is the only remaining subgraph.

AN INTERFACE BETWEEN OBJECT-ORIENTED DATABASES AND RELATIONAL DATABASES

T 1 = ~ T2 = r T3 = {OID}

271

LOCATION = 'California' MATERIAL = 'Ceramic'

DS_DATE > 851231

C \ DS#

\
Qa \

\ Q3
c# \

\ \ / Q2

QUANTITY < 500

Figure 6. The updated query graph.

(b) There is no dotted edge connected to Q3.

(c) Q3 is transformed to a local query at Location 3 as follows:

LIST3 = SELECT OID
FROM D
WHERE DSA)ATE > 851231

AND DS# IN LIST2

Delete Q3.

4. Since the query graph is null, LIST3 contains the query result.

In Example 3, the values of C# in LIST1 need to be moved from Location 1 to Location 2.
These values are used to reduce C(SUPPLY) locally in a local query transformed from Q2-
An intersite semijoin operation consists of such a data move and a local data reduction.
The semijoin strategy can be very effective for reducing intersite data communication in
processing a distributed query [9]. While the sequence of semijoins generated by ALGO-
RITHM3)2 may not be optimal in terms of the amount of reduction in intersite data traffic,
the sequence produces a minimal number of semijoins to process a distributed query.

It can be easily shown that the processings of the query in Example 3 using ALGO-
RITHM_D 1 and ALGORITHM_D2 produce the same result. If ALGORITHM_D 1 is used
to process the query, the local queries and the merging query are as follows:

2 7 2 CHIN-WANCHUNG

MATERIAL = 'Ceramic'
T 2 =

C# IN LIST 1 ~ j)

DS#

Q2

QUANTITY<5~

T 3 = {OID}

DS_DATE > 851231

Q3

Figure Z The updated query graph with two subgraphs.

T 3 = {OID}

DS DATE > 851231

DS# IN LIST 2

Q3

Figure 8. The updated query graph with one subgraph.

Local Queries:

TEMP1 = SELECT C#
FROM C
WHERE LOCATION = 'California'

TEMP2 = SELECT C#,DS#
FROM P,S
WHERE MATERIAL = 'ceramic'

AND (SY
QUANTITY < 500)

TEMP3 = SELECT DS#,OID
FROM D
WHERE DS_DATE > 851231

AN INTERFACE BETWEEN OBJECT-ORIENTED DATABASES AND RELATIONAL DATABASES 273

Merging Query:

SELECT OID
FROM TEMP1, TEMP2, TEMP3
WHERE TEMP1 .C# = TEMP2.C#

AND TEMP2.DS# = TEMP3.DS#

Let E1 [a : ot > E2 denote a semijoin from E1 to E2 on attribute a and E~ be the result
of the semijoin. The decomposition by ALGORITHM_D2 is equivalent to a sequence
of semijoins TEMP1 [C# = C# > TEMP2, TEMP~[DS# = DS# > TEMP3, with the query
result R2 = TEMP~ [OID]. However, for a restricted query, a join can be replaced by a
semijoin. Let El [or = or]E2 denote a join between E1 and E2 on attribute ot and R1 denote
the result of the merging query generated by ALGORITHMA)I. Then

R 1 = ((TEMPI [C# : C#]TEMP2) [DS# = DS#]TEMP3)[OID]

= ((TEMP~[C# : C# > TEMP2)[DS# = DS#]TEMP3)[OID]

= (TEMP~[DS# = DS# > TEMP3)[OID]

: TEMP~ [OID]

: R 2

4. Conclusions

As the amount of information in relational databases and object-oriented databases grows
in organizations, an effective sharing of these heterogeneous distributed databases becomes
important. An integrated view of the databases and a standard query language are necessary
to provide users with location and structure transparent access to the databases. The object-
oriented data model was selected as a common data model because the object-oriented data
model has advantages over the relational data model in representing the integrated view.
An object-oriented query syntax which contains basic data access features was defined to
explain the distributed query processing.

A method was developed to build an integrated view from local object-oriented data
definitions and relational data definitions. The object-oriented data model and the relational
data model represent the relationship between entities differently. Therefore, the key issue
in building an integrated view is the modeling of access paths among classes and relations.
The class composition hierarchy of the object-oriented data model was used to model the
access paths.

Two query decomposition algorithms were developed to decompose a distributed query
into a set of local queries. One is for general queries and the other is for restricted queries.
A special subset of the restricted queries consists of queries which retrieve object identifiers
of selected objects. This type of queries is unique because messages can be sent to the
selected objects using their object identifiers. The decomposition of the restricted queries
is based on the efficient processing of such queries using semijoin operations. We plan
to implement the query decomposition algorithms, first for restricted queries and then for
general queries.

274 CHIN-WANCHUNG

5. Acknowledgements

The author wishes to thank anonymous reviewers for helpful comments and suggestions.
The major portion of the research presented in this paper was conducted while the author
was at General Motors Research Laboratories. This research was partially supported by
the grant from '93 Multimedia Information Systems Platform Development Project of the
Center for Artificial Intelligence Research.

References

1. R. Amed et al., "The Pegasus heterogeneous multidatabase system." Computer 24(12), pp. 19-27, Dec.
1991.

2. M. Atkinson et al., "The object-oriented database system manifesto," in Proc. of the First International
Conference on Deductive and Object-Oriented Databases, Kyoto, Japan, pp. 40-57, 1989.

3. J. Banerjee et al., "Data model issues for object-oriented applications,' ACM Trans. Office Inform. Syst.
5(1), pp. 3-26, Jan. 1987.

4. E. BertinoandL.Martino,"Object-orienteddatabasemanagementsystems: concepts and issues" Computer
24(4), pp. 33-47, Apr. 1991.

5. E• Bertin• et al.• ``•ntegrati•n •f heter•gene•us app•icati•ns thr•ugh an •bject- •riented interface,• •nf•rma-
tion Systems 14(5), pp. 407--420, 1989.

6. B. Bobrow and M. Stefik, The LOOPS Manual, Xerox PARC, Palo Alto, Calif., 1983.
7. O. Bukhres et al., "Interbase: an execution environment for heterogeneous software systems." Computer

26(8), pp. 57-69, Aug. 1993.
8. C. Chung, "DATAPLEX: An access to heterogeneous distributed databases" Commun. ACM 33(1), pp. 70-

80, Jan. 1990. (Corrigendum 33(4), p. 459, Apr. 1990).
9. C. Chung and K. McCloskey, "A DATAPLEX prototype: an interface between two heterogeneous distributed

databases," Research Report CS-545, General Motors Research Laboratories, Jul. 1987.
10. C. Chang and K. Irani, "An optimization of queries in distributed database systems," J. Parall. Distrib.

Comput. 3(2), pp. 137-157, June 1986.
11. S. Cluet et al., "RELOOP, an algebra based query language for an object-oriented database management

system." Data & Knowledge Engineering 5(4), pp. 333-351, Oct. 1990.
12. C. Date, An Introduction to Database Systems, 4th Ed., vol. 1. Addison-Wesley, Reading, Mass., 1986.
13. O. Deux et al., "The 02 system," Commun. ACM 34(10), pp. 34-48, Oct. 1991.
14. A. Hurson, S. Pakzad, and J. Cheng, "Object-oriented database management systems: evolution and per-

formance issues" Computer 26(2), pp. 48-60, Feb. 1993.
15. IEEE, Special issue on distributed database systems, Proc. of the IEEE 75(5), May 1987.
16. T. Landers and R. R•senberg• ``An •verview •f Mu•tibase.•• D•tributed Databases• N•rth-H•••and• pp. •53-

184, 1982.
17. C. Lecluse and R. Richard, "Modeling complex structure in object-oriented databases," in Proc. of the 9th

ACM Conference on Principles of Database Systems, Philadelphia, Pennsylvania, pp. 360-368, 1989.
18. W. Litwin, L. Mark, and N. Roussopoulos, "Interoperability of multiple autonomous databases." ACM

Comput. Surv. 22(3), pp. 267-293, Sep. 1990.
19. M. Rusinkiewicz, "Heterogeneous databases: Towards a federation of autonomous systems " in Proc. ofthe

Fall Joint Computer Conference, Dallas, Tex., pp. 751-752, Oct. 1987.
20. J. Schmolze and T. Lipkis, "Classification in the KL-ONE knowledge representation system," in Proc. of

the 8th International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, pp. 330-332, 1983.
21. B. Shriver and B. Wegner (Ed.), Research Directions in Object-Oriented Programming. The MIT Press,

Cambridge, Mass., 1987.
22. M. Templeton et al., "Mermaid: A front-end to distributed heterogeneous databases" in Proc. of the IEEE

75(5), pp. 695-708, May 1987.
23. G. Thomas et al., "Heterogeneous distributed database systems for production use, ' ACM Comput. Surv.

22(3), pp. 237-266, Sep. 1990.

